人工智能300年!LSTM之父万字长文:详解现代AI和深度学习发展史

新智元报道

编辑:昕朋 好困

【新智元导读】最近,LSTM之父Jürgen Schmidhuber梳理了17世纪以来人工智能的历史。在这篇万字长文中,Schmidhuber为读者提供了一个大事年表,其中包括神经网络、深度学习、人工智能等领域的重要事件,以及那些为AI奠定基础的科学家们。

「人工智能」一词,首次在1956年达特茅斯会议上,由约翰麦卡锡等人正式提出。

实用AI地提出,最早可以追溯到1914年。当时Leonardo Torres y Quevedo构建了第一个工作的国际象棋机器终端游戏玩家。当时,国际象棋被认为是一种仅限于智能生物领域的活动。

至于人工智能理论,则可以追溯到1931-34年。当时库尔特·哥德尔(Kurt G?del )确定了任何类型的基于计算的人工智能的基本限制。

时间来到1980年代,此时的AI历史会强调定理证明、逻辑编程、专家系统和启发式搜索等主题。

2000年代初期的AI历史会更加强调支持向量机和内核方法等主题。贝叶斯推理(Bayesian reasoning)和其他概率论和统计概念、决策树、 集成方法、群体智能和进化计算,此类技术推动了许多成功的AI应用。

2020年代的AI研究反而更加「复古」,比如强调诸如链式法则和通过梯度下降(gradient descent)训练的深度非线性人工神经网络,特别是基于反馈的循环网络等概念。

Schmidhuber表示,这篇文章对之前具有误导性的「深度学习历史」进行纠正。在他看来,之前的深度学习史忽略了文章中提到的大部分开创性工作。

此外,Schmidhuber还驳斥了一个常见的错误,即神经网络「作为帮助计算机识别模式和模拟人类智能的工具是在1980年代引入的」。因为事实上,神经网络早在80年代前就已出现。

一、1676年:反向信用分配的链式法则

1676年,戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz)在回忆录中发表了微积分的链式法则。如今,这条规则成为了深度神经网络中信用分配的核心,是现代深度学习的基础。

戈特弗里德·威廉·莱布尼茨

(责任编辑:AK007)