随着化石能源的日益枯竭以及清洁能源如风能、太阳能的快速发展,全球能源消耗模式将逐渐从化石能源转向新能源。而能源消耗模式的转变很大程度上依赖先进的大规模储能技术。近年来,钠离子电池技术由于钠资源全球储量丰富、成本低、具有与锂离子电池类似的储能原理和工艺技术等优势,重新得到研究者们的青睐,发展成为一种极具应用潜力的储能技术。
水系钠离子电池基本情况
现有的二次电池技术都还不能满足大规模储能的要求。例如:铅酸、镉镍电池含有大量有害的重金属元素,大规模应用会在生产和废弃阶段造成严重的环境污染,而且对环境温度要求严格,仅适用室内运行环境;镍氢电池由于采用了昂贵的稀有金属,价格上难于满足大规模储电的成本要求。全钒液流电池除了采用了贵金属外,还有毒性和腐蚀性的问题;钠硫电池因为需要高温,液态硫和金属钠对氧化铝隔膜具强腐蚀性,容易造成燃烧事故。
相比于上述的传统二次电池,有机系离子电池以离子在正负极的嵌入脱出和在两极间扩散作为充放电基本原理,具有能量密度高,倍率高和循环寿命长的特点。在性能上可以满足储能系统的技术要求。然而,由于其大量使用易燃的有机电解质,在生产和使用过程中会造成爆燃事故,有安全性问题缺陷。而水系离子电池由于采用中性的盐水溶液作为电解质,既避免了有机电解质的易燃问题,又克服了传统水系电池的高污染,寿命短(如铅酸电池)和价格昂贵(镍氢电池)的缺点,是能够满足大型储能技术要求的理想体系之一。因此,近年来,水系离子(锂、钠等)电池的研发越来越受到关注。但是,地球上的锂资源实际上是难以支撑大型储能系统的应用需求的。于是,与锂的化学性能类似的钠被认为能够替代锂适用于水系离子电池体系。
钠是地球上储量最丰富的资源之一,可以说是用之不竭。价格也显著降低,通常为锂盐的1/10。因此,水系电解质的钠离子电池被认为是最有潜力的适合大规模储能系统的电池之一,成为最近业界研究工作的焦点。
实际上,钠离子电池的研究与锂离子电池几乎同时起步,早在20世纪80年代,人们就开展了有机系钠离子电池正负极材料的研究。但是与有机系锂离子电池相比,钠离子电池的发展缓慢。这主要是由于成功应用于有机系锂离子电池中的正负极材料体系不能简单地移植到钠离子电池中。虽然二者都是以正、负极间离子嵌入-脱出反应的“摇椅式”机理作为充放电反应机理,可是因为钠的离子半径(0.102nm)比锂离子和质子大许多,使得其嵌入反应困难。而且,负极材料在接受大体积的钠离子的嵌入反应过程中,其晶格容易发生形变甚至坍塌,影响到电池的循环性能。