谷歌DeepMind实验室推出的天气预测大模型,已在Science杂志发表。
只需要不到1分钟,它就能直接预测出未来10天的天气。
准确度上,它在90%的指标上超越了最先进的人类系统,在AI气象模型中属首次!
DeepMind的这个气象模型名叫GraphCast,目前已经开源。
它的分辨率为0.25度经度/纬度(在赤道处约为28 x 28公里),而目前的最高分辨率为1度。
这样的分辨率相当于将地球表面分割成了超过100万个网格,而每个网格又可以产生数百条预测数据,总计数量达到了上亿规模。
不同于传统的预测方式,GraphCast预测主要依靠数据中的规律进行预报,而不使用人类建立的物理方程。
相比于人类最准确的HRES预报,GraphCast在1380个测试指标中,90%的预测结果都更为准确。
如果把预测范围限制在对流层,GraphCast击败HRES的指标比例更是高达99.7%。
YC上有网友表示,用“impressive”已经不足以形容这项成果了。
那么,GraphCast的预测表现具体是怎样的呢?
90%指标超越人类最好方法
在划分出的100万多个网格上,GraphCast划分出的每个网格都能够产生227条预测数据。
其中包括了37个不同高度上,每个高度的6个大气变量(包括比湿度、风速和风向以及温度等)。
在地球表面,GraphCast还可以预测包括温度、风速和风向以及平均海平面压力等在内的5个变量。
完整的变量种类和具体高度(以气压表示,单位:hPa)如下表所示:
为了比较GraphCast和HRES的表现,研究人员从欧洲中期天气预报中心(ECMWF)的ERA5再分析数据中选取了2018年(GraphCast训练数据截止2017年)的历史数据。
研究者分别让HRES和GraphCast站在当时的情况下进行“预测”,然后比较它们的“预测”和ERA5进行比较。
在500hPa高度场上,GraphCast的RMSE(均方根误差,数值越低表现越好)和ACC(异常相关系数)指标都显著优于HRES。