从谷歌TPU 看AI芯片的未来

上周,谷歌在论文预印本平台arxiv上发表了其关于TPU v4的深入解读论文《TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings》(TPU v4:通过光互联可重配置的机器学习超级计算机,搭载硬件嵌入层加速)。

该论文将于今年六月在ISCA 2023(International Symposium on Computer Architecture,计算机架构领域的顶级会议)上正式发表,而目前的预印本无疑为我们提供了可以一窥其全貌的机会。

为了TPU的可扩展性设计专用光学芯片,谷歌也是拼了

从论文的标题可以看到,谷歌TPU v4的一个主要亮点是通过光互连实现可重配置和高可扩展性(也即标题中的“optically reconfigurable”)。

而在论文的一开始,谷歌开门见山首先介绍的也并非传统的MAC设计、片上内存、HBM通道等AI芯片常见的参数,而是可配置的光学互联开关(reconfigurable optical switch)。

作为论文的重中之重,这里我们也详细分析一下为什么光学互联在TPU v4设计中占了这么重要的位置,以至于谷歌甚至为了它自研了一款光学芯片。

TPU v4从一开始设计时,其目标就是极高的可扩展性,可以有数千个芯片同时加速,从而实现一个为了机器学习模型训练而设计的超级计算机。

在谷歌的设计中,超级计算机的拓扑结构为:将4x4x4(64)个TPU v4芯片互联在一起形成一个立方体结构(cube),然后再把4x4x4这样的cube串联在一起形成一个总共有4096个TPU v4的超级计算机。

从谷歌TPU 看AI芯片的未来

TPU超级计算机(由4096个TPU v4组成)拓扑结构,图/谷歌

在这样的拓扑中,物理距离较近的TPU v4(即在同一个4x4x4 cube中的芯片)可以用常规的电互联(例如铜绞线)方法连接,但是距离较远的TPU之间(例如在cube之间的互联)就必须使用光互连,原因就在于在如此大规模的超级计算机中,芯片之间的数据互联在很大程度上会决定整体计算的效率;

如果数据互联效率不够高的话,很多时候芯片都在等待来自其他芯片的数据到达以后开始计算,这样就形成了效率浪费。为了避免这样“芯片等数据”的情形出现,就必须确保芯片之间互联能拥有高带宽,低延迟。而光互连对于物理距离较远的芯片就成为了首选。

光互连在高性能计算中的使用也并非新闻,而谷歌在TPU v4中的主要突破是使用可重配置的光互连(即加入光路开关,optical circuit switch OCS)来快速实现不同的芯片互联拓扑。

换句话说,芯片之间的互联并非一成不变的,而是可以现场可重配置的。这样做可以带来许多好处,其中最主要的就是可以根据具体机器学习模型来改变拓扑,以及改善超级计算机的可靠性。

(责任编辑:AK007)