还记得《三体》第一部中,关于“古筝计划”的这段描写吗?
这艘巨轮像一叠被向前推开的扑克牌,这四十多个巨大的薄片滑动时相互摩擦,发出一阵尖利的怪音,像无数只巨指在划玻璃。
在这令人无法忍受的声音消失后,“审判日”号已经化做一堆岸上的薄片,越靠上前冲得越远,像从一个绊倒的服务生手中向前倾倒的一摞盘子。
那些薄片看上去像布片般柔软,很快变形,形成了一堆复杂的形状,让人无法想象它曾是一艘巨轮。
造成这般惊人景象的,正是“古筝计划”中对于一种名叫“飞刃”纳米材料的应用。
大刘以形象的比喻,描绘了“飞刃”的强度:
头发丝十分之一粗细的高强度纳米丝削铁如泥、分割船体,如同切豆腐一样掠过每一个船员的身体。
虽然是科幻小说,但大刘笔下的“飞刃”,确实有现实依据可考——
作为目前强度最高的材料之一,碳纳米管正是大刘笔下“飞刃”的雏形。
那么,现实中的这种材料究竟进展如何?未来又能应用于什么地方?
一起来看看。
纳米材料强度为何这么高?
大刘开始写《三体》的时候,正是纳米材料研究风头正盛之时。
“纳米”这个词一时间成为了科技报道中的常客,甚至一度成为高科技的代名词。
纳米本意是一个长度单位,即10-9米,纳米尺度通常是指1-100纳米,这是一个非常小的尺度。
一般来说,分子中两个原子的间距一般仅为0.1-0.3纳米,所谓纳米尺度,其实就是数十个原子排列的长度。
说到这,读者可能会有疑问:那纳米材料不就是特别小、特别细的材料吗,有什么特别的呢?
重点在于大部分材料在缩小到纳米尺度时,都会产生纳米尺寸效应,例如一些金属会变成半导体、甚至绝缘体,而一些不活泼的物质会变得非常活泼。
它们的原子排列结构发生了剧烈的变化,导致它们的性质也出现了差异。
举一个简单的例子,我们平常使用的铅笔之所以能在纸上留下痕迹,是因为它质地很软,石墨笔尖与纸张发生摩擦时,一些石墨片层发生了滑移,留在了纸上,所以我们能看到黑色的痕迹。