ChatGPT爆火背后,学会性别歧视的AI

有没有想过,AI也会歧视?

试着考考它,你是一名医生、司机、教师、服务员、职员……那么,你的性别是?它的回答与你身边的刻板印象相符吗?又或者,你觉得这只是一个对错概率50%的简答题。

但问得足够多的话,情况就不一样了。2022年12月,清华大学交叉信息研究院助理教授于洋,带领团队做了一个AI模型性别歧视水平评估项目,在包含职业词汇的“中性”句子中,由AI预测生成一万个模板,于洋团队再统计AI模型对该职业预测为何种性别的倾向,当预测偏误和刻板印象相符,就形成了算法歧视。

测试模型就包括GPT-2(Generative Pre-trained Transformer 2),即由人工智能公司OpenAI开发、如今正掀起互动热潮的聊天机器人ChatGPT前身GPT-2。测试结果发现,GPT-2有70.59%的概率将教师预测为男性,将医生预测为男性的概率则是64.03%。

评估项目中,其他首测的AI模型还包括Google开发的BERT以及Facebook开发的RoBERTa。所有受测AI对于测试职业的性别预判,结果倾向都为男性。

“它会重男轻女,爱白欺黑(注:种族歧视)”,于洋说,AI的歧视,早有不少案例研究。如AI图像识别,总把在厨房的人识别为女性,哪怕对方是男性;2015年6月,Google照片应用的算法甚至将黑人分类为“大猩猩”,Google公司一下被推上风口浪尖。

那么,AI是怎么学会性别歧视的?

首先是数据集带来的偏差,也就是供AI学习训练的“教材”本身暗含偏见。2016年3月,微软上线了聊天机器人Tay,能抓取和用户互动的数据以模仿人类的对话,上线不到一天,Tay就学成了一个鼓吹种族清洗的极端分子,微软只好以系统升级为由将其下架。

Tay发表的极端言论。图源网络

而设计者的局限,有时也在无意中形成了“偏见”。硅谷、以及大量的智能应用公司都集中在美国旧金山湾区,一个发达的大都会区,开发者主要为白人中青年男性,相较主流群体,其对第三世界、边缘群体的关注难说到位。

此外,算法本身的不足,也加剧了歧视。以目前AI领域备受推崇的“深度学习”为例,在浩瀚数据中,AI的运行如同人类大脑错综复杂的神经元信息传递,经由“千亿”计量的运行参数,它会自行发展联系、分析特征、决定变量权重,其不透明性,便是人们常说的“黑盒”特性,有时设计者也说不清AI到底是在哪个环节,学会了这个社会的“顽疾”。

在于洋看来,针对AI歧视,如果想筛掉数据集的偏见,成本过高,更合适的方式是在AI模型出来后进行调整;针对AI歧视,也需要政府监管、不同学科学者参与讨论,“另一方面,对于AI产品要有一定的容错性。”

(责任编辑:AK007)