一个尴尬的发现:
自动驾驶系统也有人群歧视。
英国伦敦国王学院的研究人员进行一项研究,通过对超过8000张图片检测后,发现了一个漏洞:
自动驾驶汽车使用的由AI驱动的行人检测系统,对儿童的检测准确率比成人低了19.67%,深色皮肤的检测准确率比浅色皮肤低了7.53%。
而性别在检测准确率上相差不大,仅有1.1%的差距。
这意味着对于无人驾驶汽车来说,儿童和黑皮肤的行人将会比成年人和浅皮肤的行人更难检测。
为什么会这样?
对儿童、深肤色人群不友好
先来看这个实验过程。
这个研究小组采用的是数据分析的方法,他们首先找到8种自动驾驶企业最常用到、也是市面上常见的行人专用探测系统。
再用这些行人探测系统收集真实场景测试的数据,包括不同亮度、对比度、天气情况等实际场景,这些数据集,主要是由所拍摄的真实街道图像组成。
他们在四个真实场景中,共得到8311张图像,图像中展示了不同姿势、大小和遮挡场景下的行人。研究人员对图像中的行人还特意加了标签,共有16070个性别标签、20115个年龄标签和3513张肤色标签。
研究重点是,自动驾驶的行人检测系统在面对不同行人时,所作出的反应是否相同,特别是在性别、年龄和肤色这三个因素上,会不会出现不公平的问题。
所使用到的探测系统包括ALFNet、CSP、MGAN 和 PRNet 等,其中ALFNet 采用的是多步预测进行渐近定位,解决了行人检测中单步检测的局限性。
CSP通过定位中心和缩放行人引入一种无锚方法;MGAN 则是利用可见区域边界框信息引导注意力生成,主要用于遮挡情况下对行人的检测。
图像收集完后,针对自动驾驶系统是否对群体存在不公平的问题,研究小组使用了一个差异性公式。
MR一般是表示行人检测研究中最常用的性能指标,MR=1-TP/(TP+FN),这里的TP(真阳性)是指成功删除的地真边界框的数量,FN(假阴性)是指未检测到的地真边界框的数量。