比特斯拉还少1个摄像头!智能车赛道最隐秘的AI视觉玩家浮现

智能车赛道,藏着一个最隐秘的AI视觉玩家。

这个玩家尚未官宣任何智能车相关的业务进展,但又在最核心、最前沿、最被渴求的自动驾驶系统能力上屡屡展现竞争力——全球AI顶会冠军级的统治力。

不仅具体技术上突出,在目标检测、语义分割、视觉推理等方面有诸多顶会级研究;还拿下多个自动驾驶相关比赛的冠军,甚至还用7个摄像头的纯视觉方案,完成了高速、城区和泊车环境的自动驾驶。

这个玩家不是特斯拉的AI团队,这个玩家是旷视科技

在最近的AI顶会CVPR中,大模型加持下的视觉研究,正在驱动自动驾驶方向的新研究,而旷视研究院,在一众自动驾驶和智能车玩家参与的竞赛中,获得了考察自动驾驶环境感知能力的冠军。

AI视觉领域的超级明星,现如今在业务上还没有与智能车传出关联。

但有这样的技术研究和成果,当真会纯出于学术研究?

旷视刷榜了什么自动驾驶比赛?

旷视研究院参加的这个比赛,是CVPR 2023专门面向自动驾驶感知决策系统设立的挑战赛。

其中OpenLane拓扑关系挑战赛冠军,被旷视收入囊中。

挑战赛一共四个赛道,除了旷视参加的OpenLane拓扑关系挑战赛(OpenLane Topology),还有在线高精地图构建挑战赛(Online HD Map Construction)、三维占据栅格预测挑战赛(3D Occupancy Prediction)和nuPlan规划挑战赛(nuPlan Planning)。

比特斯拉还少1个摄像头!智能车赛道最隐秘的AI视觉玩家浮现

其中,OpenLane拓扑关系赛道主要考察自动驾驶技术理解场景的能力。

赛道要求基于OpenLane-V2(OpenLane-Huawei)数据集,输入给定环视相机照片,参赛者需要输出车道中心线和交通元素的感知结果,以及这些元素之间的拓扑关系预测。

比特斯拉还少1个摄像头!智能车赛道最隐秘的AI视觉玩家浮现

也就是说,这个比赛不是考察以往自动驾驶感知中,对车道边缘线或者交通标志单一的识别能力,而是要求自动驾驶技术可以感知车道中心线,还要能理解车道中心线和交通元素的逻辑关系,比如绿灯亮了,这意味着哪条车道可以通行。

那么如何判定冠军?OpenLane-V2数据集提供了判定标准:OLS分数(OpenLane-V2 Score),通过计算感知结果和拓扑预测mAP的平均值判定得分。

(责任编辑:AK007)