自生成式人工智能火遍全球以来,有关其漏洞和安全的质疑声层出不穷,包括图灵奖得主、苹果联合创始人、马斯克以及「人类简史」作者等在内的超过1000位大佬联名呼吁——应该立即停止训练比GPT-4更强大的AI系统,暂停期至少6个月。3月底,意大利因隐私问题已成为第一个禁止ChatGPT的西方国家。此后,德国、加拿大、法国等也相继表达相似态度,一度让AIGC在欧洲陷入僵局。随着反对的声量越来越大,3月29日,英国政府发布了针对人工智能产业监管的白皮书,提出对AI技术全方位监管的方法。
而我国在开发AIGC产品后,也逐渐意识到人工智能的发展不能“蒙眼狂欢”,国家互联网信息办公室“及时出手”,于4月11日就《生成式人工智能服务管理办法(征求意见稿)》公开征求意见,彰显出了中国鲜明的监管态度。
如今,人工智能早已成为全球新一轮科技革命和产业变革的着力点,在一定程度上象征着综合国力和人民福祉。但当“监管”成为人工智能发展的全球时代主题时,我们该如何防止“将新事物扼杀在摇篮”里的心态,在监管之下寻找适合我国AI发展的突破口?我想,我们应该区别于欧盟强监管策略和美国自治式管理模式,站在我国安全与发展并重的立场上,建立一套多维度、多层级、多领域探索人工智能的特色治理之道。
本期小强传播将用纵向的逻辑来梳理我国人工智能相关的政策文本,以政策延续性的视角来观测我国AI产业的建设维度和战略重点,为我国人工智能发展与监管的博弈模式提出相关建议,也为未来我国特色治理道路的研究注入些许活力。
英国政治学家彼得·霍尔认为,政策的制定过程包含三个主要变量:指导特定领域之政策的总体性目标;为了实现目标所采取的政策工具;对政策工具的精确设置。[1]他的这一政策范式表明政策的制定和施行是政策制定者、政策制定的目的以及政策工具三者统一协调的过程,政策制定者可以理解为政策发文主体,政策目标可以看作是为了解决某一问题的发文主题,政策工具是实现目标的手段。本文将以彼得·霍尔的政策范式理论为基础,从发文主体、发文主题和政策工具三个方面来考察2017年7月以来人工智能政策的发展和演变。
2017年7月国务院印发的《新一代人工智能发展规划》是我国第一个在人工智能领域的综合性文件,重点对 2030 年前我国新一代人工智能发展的总体思路、战略目标、主要任务和保障措施进行了系统部署。因此,2017年7月是人工智能发展的代表性时间节点,选择此节点后的时间段能够有效观测规划的落实情况和人工智能的行业现状。